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WAVEGUIDE WITH ARBITRARY CROSS-SECTION 

CONSIDERED BY CONFORMAL MAPPING 

by F. J. Tischer and H. Y. Yee 

/ 6U0 
Summary - The arbitrarily-shaped waveguide i s  transformed by conformal mapping into 

a rectangular guide f i l led with a hypothetical medium. The permittivity and the perrnea- 

bi l i ty  are anisotropic with the longitudinal component dependent on the transverse posi- 

tion. The field distributions and the propagation characteristics are computed for the 

transformed guide for both TE and TM modes. The field distributions i n  the original 

waveguide can be obtained by inverse transformation. 

An iterative approximation method i s  used for deriving a solution of the nonsepar- 

able wave equation. As an example, the properties of a coaxial guide are considered by 

this method and the results compared with known data. A urHOe 



Introduction 

Simply shaped electromagnetic waveguides (for example: rectangular circular, 

el liptical, and parabolic waveguides) have been investigated extensively. in contrast to 

that knowledge about waveguides of a general cross-section i s  rather limited. The analy- 

t ic  solution of +he propagation problem in  a simply shaped waveguide fi l led with homoge- 

neous isotropic dielectric can be obtained without difficulties because of the separability 

of the wave equation for the coordinate system pertinent to the boundary conditions. 

in  a study of the ridge guide in  1947. la~hkin(* '~)  and Yashkin 

proximate calculations for the cut off frequencies of waveguides with complicated cross- 

(1 1 Work on waveguides of a more complicated cross-section was started by Cohn 
(4) made some first ap- 

section Recently, Hu and ishimaru (5'6) investigated the lunar line i r ?  the same way. 

Clemeni and Johnson" considered the cut off frequencies for waveguides of arbitrary 

cross section experimentally. However, so far, no analytic solution has been made for 

waveguides whose surfaces upon which boundary conditions are to be satisfied i s  not one 

of the separable coordinate surfaces.* 

One way to solve the problem of wave propagation in an arbitrarily shaped wave- 

guide applying conformal mapping i s  shown by Tischer Some transformations by con- 

formal mapping with equal scale factors of  two-dimensional coordinate systems (for 

example: polar, ell iptical and parabolic coordinate systems) are well known(9). If the 

cross section of a waveguide under investigation follows the coordinates of one of these 

systems, i t  i s  possible to analyze the propehdies of  the waveguide in the transformed plane 

(the Z-plane) in  which the cross-section bas a rectangular shape, Herewith the compu- 

tation of the properties of an arbitrari ly-shaped waveguide fi I led with uniform and iso- 

(8 1 

I 

I tropic medium i s  substituted by that of a rectangular guide fi l led w i t h  nonuniform and 

anisotropic medium as i t  w i l l  be shown later. This method i s  then applicable to wave- 

guides of any shape for which the conformal transformation into rectangular coordinate I 
I 
I can be found. 

, 

I 

I 

* A very recent article by H. H, Meinke and co-aufhors i n  the Proceeding of the lEEE 
(vol 
section. 
proach of  the solution of the wave equation i s  followed in  this paper, 

51 I November 1963, 143-1443) deals with waveguides of a general cross- 
It was read by the authors affer completion of this paper. A different ap- 
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In the following considerations, basic relations between the field components, the 

permittivity, and the permeability in the Z-space (the Z-space i s  the space of the Z-plane 

together with the longitudinal coordinate) and in  the W-space (the original space) are de- 

rived. 

tions i s  separable in  both spaces (the W-space and the Z-space). The analysis of the 

coaxial waveguide i n  the Z-space i s  made to illustrate that the properties of a waveguide 

under consideration in  the Z-space are the same as those in  the W-space. The second 

case deals with cross-sections which lead to nonseparable wave equations 

formulas are employed for the computation of the properties propagation of the guide. 

The approximate cut-off frequencies, guided wave lengths, and field components may be 

obtained i f  the square of the scale factor i s  integrable within the region under considera- 

tion. Some of the cut-off frequencies of a coaxial waveguide are calculated by the per- 

turbation method and compared with those computed by the direct method in  the W-space. 

The comparison shows that the perturbation method can be used to find good approximate 

solutions for waveguides of arbitrary cross-sections 

First, the case i s  treated where the wave equation obtained from Maxwell’s equa- 

Perturbation 

Coordinate Transformations 

The application of conformal mapping to the solution of two-dimensional static 

electromagnetic field problems(”) i s  well known. Now, conformal mapping i s  applied 

to guided-wave problems. Disregarding the longitudinal coordinate, the complicated 

cross-section of an arbitrary waveguide may be transformed into a rectangle or a pair of 

parallel lines in  the transformed space. Theguide with this cross-section i s  f i l led with 

nonuniform anisotropic medium. Both, the permittivity and the permeability have the 

same tensor form, and they are functions of  the transverse coordinates in the W-space. 

Fortunately, the tensor has only three elements and only one, namely, the longitudinal 

element i s  a function of the transverse position. 

Suppose there exists a transformation 

P = f (u ,v )  

q =f (u,v)  

such that the lines of  the cross-section of an arbitrarily shaped hollow-pipe waveguide i n  . 

the W-plane are loci of constant u,v orthogonal curvilinear coordinates [see Fig. l(a)] 



-3- 

where p and q are the two-dimensional Cartesian coordinates. The connection bet- 

ween the two coordinate systems i s  usually made by means of the length of an infinitesimal 

line element 

2 2 2 2 2 
ds =dp +dq = (hl du) + (h2dq) . 

The rectangular coordinates x and y in the Z-plane are, by definition, func- 

I I tions of  only the orthogonal coordinates u and v in the W-plane respectively. Then, 

the arbitrary shape in  the W-plane as shown in Fig. l(a) may be transformed into a rec- 

tangle in  the Z-plane as shown in  Fig. l(b). 

I 

I 

I 
Comparison of Maxwell's equations for orthogonal curvilinear coordinate system in 

~ 

the W-space and for the rectangular coordinate system in  the Z-space shows'*) that for 

~ hl =h2 

H 

HW = [  ;; j I 

V 
- E Eul I 

p z =  pw 1 0  

lo 

J 1. I 

7 r Ex 

:] 1 I 
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I 

where the superscripts indicate that the quantity i s  in  the W- or i n  the Z-space. The 

other quantities: 

h = h = h2 =the scale factor for the coordinates u and v, 

p =permeability, 

E =permittivity. 

If the original waveguide i s  bounded by a perfect conductor and fi l led with air, 

the wave equation obtained for the rectangular guide in  the Z-space i s  a partial dif- 

ferential equation of the following general form ( $  i s  a representative scalar): 

1 

a2Jr + k h  2 2  Jr = O ,  - a2Jr + -  
ax 2 a: 

for time varying fields (e id ), where 

2 2 
Z 

k 2 = k  - k  
0 

(3) 

The quantity k 

The scale factor h i s  a function of x and y. For TE (transverse electric) wave modes, 

$ = H , for TM (transverse magnetic) wave modes Jr = E . Whenever a suitable 

Jr = EZ (x,y), HZ (x,y) i s  found for the boundary conditions [as shown in  

i s  the longitudinal propagation constant and X the guide wavelength. 
Z 9 

Z 2 

solution 

Fig. l(b)] , the transverse components of the fields are given by 

E = - - ( -  Z Z + - - )  T o  aHz , 
jk E 

X k2 a x  k Z a Y  
(4) 
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Z 
Q E  aE 

ax 
Z 

Q E  aE 

ax (4) 

for every component i s  understood. AI I the components i(d - k A  where the factor e 

of  the fields of the curvilinear coordinates in the W-space may be calculated by Eq. (2). 

Transformation and Conformal Mapping 

As a next step, a complex relationship between the coordinates in the two coor- 

dinate systems i s  introduced 

may be represented by a complex function 

The cross-sectional coordinates for the assumed waveguides 

R = f ( Z ) ,  

where 

R =  p + i q ,  

Z =  x + i q .  

The cross-sections of the two waveguides are shown in  Fig. 1 (a) and (b). The orthogo- 

nal curvilinear coordinates u and v are contained in the rectangular system in  the 

W-plane, and are functions of only x and y respectively. 

functions, i t  can be shown that under these conditions, the scale factor i s  given by 

For regular and analytic 

The wave equation Eq. (3) is, in the general case, nonseparable. In some spe- 

cia1 cases, it i s  separable. The separation i s  possible i f  the coefficient h , which i s  

a function of x and y I can be written as follows: 

2 
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Y 

f ( Z )  

2 
where g 

may vanish. Noting that 

and g2 are functions of only x and y respectively. Either g and g 1 1 

0 1 
-Z 

aZ2 + bZ +C AeZ + Be 

I f '  ( Z )  12 = f '  ( Z )  f '  ( Z * )  

Coordinate 

system 

where the star stands for complex conjugate quantity. Then, Eq. (6) reduces to 

a=O, b#O a # o  A=O or B=O A f O ,  B f O  

rectangu lar Pa ra bo1 i c Polar e l  liptical-hyperbolic 

[ f' ( Z )  f ' ( Z * ) ]  = 0 .  
a2 

ax ay 

I nt roduc i n g 

. a2 
- 1 -  

a2 - * a* 
ax ay '2 az*2 I 

- -  

the method of separation yields 

d 
- [ f ' ( Z ) l  = y f ' ( Z )  
d Z2 

[ f ' ( Z * ) ]  = y f '  (Z*)  . d2 

d Z*2 

Four two-dimensiona I coordinate systems (namely: rectangular , polar, parabo I i c , 
elliptical-hyperbolic) may be obtained from the solutions of Eq. (7) as tabulated in 

Table 1. 

Since the wave equations obtained in the W- and the Z-space are equivalent, the 

two-dimensional coordinate systems other than the foregoing four are non-separable and 

the wave equations are non-separable variable partial differential equations. 
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Mamina of  the Cross-Section of a Coaxial Waveauide 

As discussed previously, solution of a waveguide may be obtained by considering 

the waveguide in  the Z-space, where the originally complicated cross-section of the 

waveguide i s  transformed into a rectangle. Since the branch-points and the periodicity 

may be introduced by the conformal mapping, care must be taken to consider the bound- 

ary conditions such that the corresponding boundary conditions i n  the Z-space are con- 

sistent wi th those in  the W-space. For example, the coaxial waveguide i n  the W-space 

may be transformed into a parallel-plane waveguide in the W-space (see Fig. 3) by 

means of the transformation 

Z 
R = a e  . 

It i s  easily seen that the relations between cylindrical coordinates in  the Z-space and 

the rectangular coordinates in  the W-space i s  given by 

X 
r = a e  , a = y ,  

p z r c o s a  , q = rs in  a . 
The shaded area between two concentric circles i n  the W-plane (for one cycle) 

corresponds to the shaded rectangle area in the Z-plane as shown in Fig. 2. An ad- 

ditional cycle in  the W-plane simply lengthens the rectangle in  the Z-plane by 2a i n  

the y-direction. In order to fu l f i l l  the boundary conditions and the continuity of the 

field components of the coaxial waveguide in the W-space, the corresponding rectan- 

gular waveguide in  the Z-space must satisfy the following boundary conditions: 

(A) TE modes: 

a a - Jr (X,O) = - Jr ( X , W  I 

a Y  aY  
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a 
ax - 

The scale factor may be calculated by taking the magnitude of the derivative of R 

with respect to Z as follows: 

(1 0) 
h 2 = a e  2 2x . 

Substituting (10) into Eq. (3) the wave equation assumes the form 

where K 2 = k a .  2 2  

Since Eq (1 1) i s  a separable-variable partial differential equation, the exact analy- 

t i c  solution can be written as a product function 

Jr  h y )  = X(X) Y(Y) . 
Substituting into Eq. (1 1) and employing the conventional steps yields 

(W 2 
+ k Y = O ,  

- d2Y 
dr2 Y 

2 2x 2 - d2X + (K e - k ) X  = O  , 
dx 2 Y 

where k i s  a separation constant. Solution of Eq. (12a) i s  readily seen to be 
Y 

Y(y) u cos 
sin k y ~  
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I 

I 

I 

By change of variable, Eq. (12b) may be reduced to 

I 

K2 2 

dp2 P dP 4p 4p 

- d2X + - 1 - dX + ( -  - % ) X = O .  

2x 
where p = e 

Solution of  Eq. (12c) i s  given by (1 1) 

X = AJ (KeX) + BN (KeX) . 
kY kY 

The total solution of Eq. (1 1) may be expressed in the form: 

(1 3) 
cos 
sin k y ~  

@ =: [ AJ (KeX) + BN (KeX) 1 
kY kY 

The periodicity of the boundary condition along the y-direction requires that k = n, 

where n i s  an integer. 
Y 

Confirming the problem to the TE rnn modes, the field components in  the Z- 

space may be obtained from Eqs. (4) and (13) as follows: 

cos 
H Z = [ AJ n (KeX) + B N  n (KeX) 1 sin "Y r 

cos 
"Y I 

H = - -  
sin 

ikz aex [ AJN (Ke') + B N '  (KeX) ] 
X k n n 

sin ik 
"Y I cos 

H = + 2 n [ A J  (KeX) + BN (KeX)] 
Y k2 n n 

E = O  I 
z 

- Ot-'O E, - - 
kZ Y f  
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The value of k may be calculated from the characteristic equation; subject to the 

boundary conditions (8), it i s  given by 

J' (Keb) N' (Keb) 

n n 

By conventional method, the solution of the wave equation i n  circular cylin- 

(12) drical coordinates leads to 

cos 
H = AJ (kr) + B N  (kr) sin na I 

Z n n 

cos 
na f 

H = - -  
sin 

jkg AJ' (kr) + BN' (kr) 
r k n n 

sin 
na I cos 

H = + jks 2 AJ (kr) + B N  (kr) 
a - k 2 r  n n 

E = O f  
Z 

Observe that the Eqs. (14) and (15) become equal i f  the following relations 

= ae , r = h = ae , a = y, Hr = Hu, Ha = H ; and 
b X 

'1 '2 V 
are introduced i .e. I 

Eqs. (14) are substituted into Eqs. (2). 

This shows that the conformal-mapping method leads to the same field equa- 

tions as they are obtained by the direct solution of the wave equation in  the cross- 

sectional coordinate system taking into account the boundary conditions. 
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I 

Amroximate Solution of the NonseDarable Wave Eauation 

In general , the wave equation i s  nonseparable and no exact solution for arbi- 

trary boundary conditions i s  known 

used to solve this problem. It should be noted that even for the separable wave equa- 

tion , which can be solved exactly, the approximate method of evaluation may be 

simpler in some cases. In the following sections, a perturbation method and an example 

of  i t s  application w i l l  be presented. 

Therefore, approximate techniques have to be 

Consider that the scalar function JI of Eq. (3) i s  limited to the region 

0 < x < a , 0 < y < b , and subject to the boundary conditions - -  - -  

which i s  typical for TE modes in waveguides. The corresponding conditions for TM 

modes are 

Jr(0,Y) = IJb,y) = Jr'(Xf0) = * ( x N  = 0. (16b) 

Define next a complete set o f  functions { 9 } , where @ satisfies the foregoing bound- 
9 q 

ary conditions, as $ does, and where @ may have the same form as one of  the eigen- 

functions of the wave equation with h constant. The function @ has hence the form: 
q 

2 q  

mT n a  
x cos - b y f  TEmn: @q (1) - \ j - e m e n  - ab cos - a 

ma n r 
a 

x sin - sin - b y f  

where e = 1, i f  m,n = 0 and e =2, i f  m,n # 0. The subscript q i s  
m,n m,n 

used to denote the general indices 

m,n = 0, 1, 2, 3, 4, ......... 
The expansion of  one eigenfunction @ (for variable coefficient in terms of  @ may 

P 9 
be written as 
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where p indicates specific pairs of  m,n for TE or TM modes. Substituting Eq. (18) 

into Eq. (3), carrying out the differentiation, rearranging the terms, and forming the 

integral over the cross-section yields 

(1 9 4  
2 2 2  a b  

2: J J @ [ - L  + k  h (x,Y)] A @ d x d y = O  , 
9 0 0  r q P q q  

2 2 
where L2 4 = [y) 

+ (y] . 
The constant k i s  the eigenvalue for the eigenfunction . The integration gives 

P P 

where 

2 : ( - L 2  6 + k 2 B  ) A  = O F  
9 q nl P r q  q 

a b  

The nontrivial solution of the scalar function can be obtained only i f  the determinant 

formed from the terms between the parentheses of Eq. (1%) vanished. Hence 

det I L2 6 - k2 B 
q r q  P n l  

Eq. (21) can be explored for obtaining the eigenvalues k . This i s  not done 
P 

here, however, since the computation of  these eigenvalues and o f  the coefficients 

A can be combined evaluating Eq. (1%). The development of the corresponding 

equation i s  shown in  the Appendix. If the outlined procedure i s  repeated an infinite 

times, it results in  the following equations for A 

q 

and k : 
q P 
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I 

A = 1 ,  
P 

B B B  
.... } , 2 1 P9 9P + t Pq qr rp + 

B B  

q j P  D D Pq Pqr P P +  qjP D 
k2 = L p / {  B 

P 
pq rfS/p 

3 

L2 

rr - ( B  + 
B B  
rs sr 
D 

Pq rs 

B B B  
rs st t r  + ....) 

means that the terms r = q and r = p are omitted from the 
t 

rps ,P 
The notation 

sum, etc. For solving the Eq. (23) the same iterative method i s  used as outlined in 

the Appendix, the resulting approximation o f  the various orders are given in the fol- 

lowing: - 

First order: (k2)(’) I= L2 / B , 
P P PP 

B B  Second order: 

2 I: Pq qP } , 
PP + qfp , 2  

(k2)(2) = Lp / {  B 
P 
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Third order: I 

(k2) (3)= ? / 
P P 

I: 
+ qfp 

rps I P  

2 
P 

Fourth and higher order values of k can be developed correspondingly. 

Substituting the approximation of a specified order for k into Eq. (22) and 
P 

disregarding terms of higher order yield the corresponding approximation for A . In 

this manner cutoff-frequencies k (k = k ) and field distribution in  the Z-space can 

be computed with any accuracy. The components of the fields in  the original W- 

space (arbitrary cross-section) may be obtained by using Eq. (2). 

q 

c c  P 

Cutoff Frequencies of a Coaxial Waveguide Determined by Perturbation Equations 

As an example, the cutoff frequencies of  a coaxial waveguide are computed 

by using the derived perturbation equations and compared with those obtained by 

direct calculation. 

The coaxial waveguide under consideration i s  the same guide (see Fig. 2) 

treated previously for comparing the results obtained by conformal mapping with 

those resulting from direct calculation. Consider the TE modes first i n  the Z-space. 

The function ~r i s  subject to the boundary conditions (1 1). Modification of Eq. 

(17a) gives 

cos 
X "Y * 

- - 7/Bmsn cos - m7r ' mn 27r b b sin 
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T E I O  

TE20 

Substituting into Eq. (20) and evaluating the integration yield 

Exact 

1.4231 1.6344 1.6355 

2.955 3.1744 3.1785 

( k d  1) /ka)( 2) 

2b 2 e - 1  
a 2b B =  

00 
I 

2 
B = a  
mm 

2b 
e - 1  

2b 

m s  )2 
b 

b 

2 +  (- 

1 t (- m s  )2 I 

- J C  

where q stands for m,n and r for m:nl 
b 

For the case that e =3, OF b = 1.0986, 

I f  nfn', i t  follows that B = B = 0. qr mnm'n' 
he eigenvalues of the first and second order 

and TE20 modes are tabulated in of approximation ka, calculated by Eq. (24) for TE 

Table 1 1 .  They are compared with the exact values. 
10 

It i s  noted that the convergence i s  very good, and the values of ka approach 

fast the exact value. 

Turning to the TM modes, the solution of ~r i s  subject to the boundary con- 

dition (12), so that 

7 

m n  cos 
X "Y f 

s i n  - ' mn n b  b sin 
2 e 2b - 1  ( ? ) 2  

2b 1 + ( -  m n ) 2  B =  a 
mm 

b 
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TMl 1 

=- d e  For the same waveguide as before, i .e., b = 1.0986, the 

11 

:nnrn'n' 
If n#n'B 

eigenvalue ka calculated by Eq. (24) for the TM 

and compared with the exact value. 

mode i s  tab;:Iry'ed i n  Table Ill 

Exact 

1.6819 1.6339 1 -6355 

(d 1) (ka)( 2) 

I 

I 

Conclusion 

The foregoing consideration o f  conformal mapping shows that this method i s  

useful for computing the field distributions and propagation characters of  waveguide 

with arbitrary cross-section e Perturbation method can be used for determination of 

the field distribution in  the guide and i t s  characteristics in  the transformed plane in 

which the cross-section i s  a rectangle. These quantities are re-transformed into the 

original plane with the original cross-section. The example shows that good approxi- 

mation i s  obtained after a few iterative steps of the successive approximation. 

I 
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I 
I 

t , 

j 
I 

1 

I 

I 
I 
I 

~ 

I 
I 
I 

I 
I 

I 

I 

t 
1 

i 

I I 

I 

i 

Appendix. Development of the Perturbation Equation 

Suppose that the waveguide in the W-space changes i t s  cross-section to be- 

come a rectangle, the solution If reduces to @I so that A = l - Rewriting 

Eq. (1 9b) and bringing the term q = p (with A = 1) to right-hand side yields 
P P P 

P 

L2 L2 

q#P P P 

S - B  ) A  = B  - -  p 6 .  
rq 9 rp k2 1 ( - -  k2 rq 

means that the term q = p  i s  omitted from the sum. In 
1 
qh The new notation 
. .  

some practical cases, the off diagonal elements of the matrix 

[ A S  L2 - B ]  

r9 k2 rq P 

are verysmall, i.e., B << B i f  r # p * .  Evaluation of the equation system Eq. 

(A. 1) shows that A 

and 1 n - n' I >> 1. Then Eq. (1%) reduces to a finite-number equation system with 

a finite number of unknowns. The perturbation method can be started hence with a 

finite number of values A Eq. (1%) may be written as (with A = 1, r = p) 

rq rr 
<< 1, where q # p. 

~0 i f  m - m '  >> 1 I I  9 

- O f  Brq 
As an cpproximation it i s  hence assumed that A 

q 

9 P 

L 2 - k 2 B  - k 2  B A = O .  
P P PP P qzp P9 q 

To determine A , the terms in  p, and q are separated out in the sum of  Eq. (1%) as 
P 

B A )  = 0. (A. 3) 
1 (L2 - k2 B ) A  - k2 (B + 

q P qq q P qP rpsrp qr r 

As a first step, assume that A =O. From Eq. (A.2), the f i r s t  order approxi- 
q 

mation for the eigenvalue k becomes 
P 

* The scale factor h of a rectangular waveguide i n  the W-space i s  a constant, namely, 
h . Then B = h S , A = 0; hence a waveguide not far away from the rectangular 
0 rp o r p q  

guide w i l l  satisfy this assumption. However, in  general, B <<B i f  the order num- 
bers differ greatly. rg rr 
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n n 

kL = LL / B 
P P PP' 

Next i f  it i s  assumed that A = 0, then, solving Eq. (A.3) for A yields the first 

order approximation for the coefficient 
r 9 

P 

Substituting Eq. (A.5) into (A.2), one obtains the second order approximation for k 2 : 

B B  
k 2 = L /  2 B 1 P9 qP 
P P 

Continuation of this procedure toward higher order terms gives for the second order 

value o f  A 
q 

A =  
q 

B r 

9P + 
1 

r p s  tP 

B B  
qr r9 

I 2 
L 
r 

k2 
P 

- - B  
rr 

L 

r f q t  P 

Further repetition leads to  the general solution given by Eqs. (22) and (23). 

In the case that the solutions of  the wave equation are degenerate, e.g., when 

the eigenfunctions J I  f l f  Jr have the same eigenvalue k Eq. 

(A. 1) i s  not valid to solve for the coefficient A I and the series of Eqs. (22) and (23) 

are not convergent. This dif f iculty may be overcome by modification of the expansion 

of the eigenfunction. 

*P' P I  P 2 * * . *  Pn P 

P 
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Fig .  1 - Cross-section of a waveguide in the corresponding plane. 
(a) Arbitrary cross-section in the W-plane. 
corresponding cross-section in the Z-plane. 
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Fig. 2 - The corresponding cross-sections of a coaxial waveguide in the 
W- and Z-plane. 


